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ABSTRACT

The nonlinear local Lyapunov exponent (NLLE) can be used as a quantification of the local
predictability limit of chaotic systems. In this study, the phase-spatial structure of the local
predictability limit over the Lorenz-63 system is investigated. It is found that the inner and outer rims
of each regime of the attractor have a high probability of a longer than average local predictability
limit, while the center part is the opposite. However, the distribution of the local predictability limit
is nonuniformly organized, with adjacent points sometimes showing quite distinct error growth.
The source of local predictability is linked to the local dynamics, which is related to the region in the
phase space and the duration on the current regime.
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1. Introduction

The atmosphere is a chaotic system that is sensitive to
initial conditions (Li and Chou 1997). The problem of
atmospheric predictability has been researched for sev-
eral decades, since the pioneering work of Thompson
and Lorenz (Lorenz 1963, 1965, 1969a, 1969b; Thompson
1957). The main achievement of these early studies was
the exploration of the intrinsic limit of predictability in
weather forecasting (Chou 1989; Feng et al. 2001; Mu,
Duan, and Wang 2002).

As one of several dynamical methods, the global
Lyapunov exponent can be used as a measure of the mean
divergence rate of nearby trajectories on a strange attrac-
tor (Eckmann and Ruelle 1985; Sano and Sawada 1985;
Wolf et al. 1985). Given a dynamical system with an initial
perturbation of size §, if the accepted error tolerance A
is still sufficiently small, then the largest Lyapunov expo-
nent 4, gives a rough estimate of the predictability limit:

T, ~ Ai In (%) Prediction becomes meaningless beyond

the predictability limit owing to the propagation of initial
errors over the entire chaotic attractor (Wang et al. 2012).

However, we are often more interested in the quanti-
fication of the local predictability limit (Ding, Li, and Ha
2008; He et al. 2006). The identification of regions of high
and low predictability is of critical importance to numerical
weather forecasts. Nese (1989) investigated both the tem-
poral and phase-spatial variations of short-term predicta-
bility using local divergence rates for the Lorenz attractor.
He concluded that predictability varies considerably with
time, while at the same time phase-spatial organization
to the variability exists. Mukougawa, Kimoto, and Yoden
(1991) adopted the Lorenz index, which gives the ampli-
fication rate of the root-mean-square error during a pre-
scribed time interval to measure the local predictability,
and obtained the organization on the Lorenz attractor.
Abarbanel, Brown, and Kennel (1991) defined the so-called
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finite time Lyapunov exponent and studied the variation
of predictability over the attractor. Yoden and Nomura
(1993) discussed the problem of applying the finite-time
Lyapunov exponents and vectors to the problem of atmos-
pheric predictability.

Generally speaking, the aforementioned studies belong
to the field of linear error dynamics, because the initial per-
turbations are infinitesimal and therefore can be approx-
imated by a tangent linear model (TLM). As time evolves,
the TLM cannot simulate the error growth, as nonlinear
effects begin to dominate the evolution of the initial per-
turbations. A better option is to turn to the nonlinear local
Lyapunov exponent (NLLE), which integrates the original
equations without linearizing them (Chen, Li, and Ding
2006; Ding and Li 2007; Ding, Li,and Seo 2010, 2011; Ding,
Li, and Zheng 2015; Li and Ding 2011, 2013). Taking the
Henon attractor as an example, Ding, Li, and Ha (2008)
applied the NLLE to quantitatively determine both the
temporal and phase-spatial variation of the local predict-
ability limit on the attractor. What they found was that
the local predictability limit of the Henon attractor varies
widely with time. Meanwhile, no significant phase-spatial
structure was found in the phase space.

The question remains, however, as to whether there
are regions of high and low predictability for the Lorenz
attractor using the NLLE method. And if so, is the organ-
ization of the local predictability limit the same as that
derived from linear methods? More importantly, what
is the source of the local predictability? These are the
objectives of the present research. We show that the
organizations of the local predictability limit quantified
by the NLLE method and the short-term methods are
quite different.

Following this introduction, Section 2 describes the
model and experimental design. The phase-spatial struc-
ture and a description of the statistical properties of the
local predictability limit of the Lorenz system are given in
Section 3. Finally, a conclusion is presented in Section 4.

2. Experimental setup

The Lorenz system was first used by Lorenz (1963) to rep-
resent cellular convection. The equations include

X =—o(x—y)
y=—XxZ4+rx-y, (1)
z=xy—bz

where the parameters are 0 = 10, r = 28, b = 8/3. As the
most frequently studied chaotic system, the Lorenz model
has two wings that look like those of a butterfly, with one
wing as the warm regime (x> 0, y > 0) and the other as the
cold regime (x < 0,y < 0).
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Using the fourth-order Runge-Kutta method with a
step-size of 0.01, the Lorenz model is first spun up for 5000
time steps starting from (x, y, z) = (1, 1, 0) with the three
model parameters listed above. Then, another 5 x 10* steps
are integrated and used as the initial points in this study.
Each one is superimposed with an ensemble of N =1 x 10*
initial perturbations of magnitude 104 The ensemble
mean NLLE 4(x(t,), 7) and mean relative growth of initial
error E(x(ty), 7) can be obtained for each initial state. Thus,
we can quantitatively calculate the local predictability limit
of the Lorenz system. The methods are the same as those
employed in Ding, Li, and Ha (2008).

3. Results

Figure 1 shows the variation of E(x(to),r) and the loga-
rithm of E (x(t,), ) as a function of time and with aninitial
magnitude of € = 10~ It can be seen that A(x(t,), ) oscil-
lates between positive and negative values at the begin-
ning of the evolution. This is due to the transient error
growth period, when errors of random directions align to
the fastest growing mode (Trevisan and Legnani 1995).
Afterwards, the value fluctuates around a positive value
and finally approaches zero as time increases (Figure 1(a)).
Correspondingly, the relative error growth E'(x(to), r) sat-
urates to a nonlinear fluctuation level after a period of
zigzag growth (Figure 1(b)). The local predictability limit
is approximately 16 dimensionless time units.

Repeating this procedure over the Lorenz attractor,
the distribution of the local predictability limit can be
presented quantitatively in the phase space (Figure 2).
On the whole, the inner and outer rims of each lobe show
a higher local predictability limit, while for the center of
each lobe the local predictability limit is lower. This result
is quite different from that reported by Nese (1989), but
corresponds well with Li et al. (2012), who estimated the
predictability limit using space entropy. The reason behind
this is the measure of the predictability limit adopted in
each study. What Nese (1989) was trying to investigate was
the local divergence rate of the linear error growth period.
However, the nonlinear error growth dynamics are most
prominent after the linear error growth. Only considering
the linear error growth makes it impossible to reflect the
overall predictability limit. The other characteristic of cha-
otic systems is the phenomenon of isolated islands; where
nearby points in the phase space may be quite different
in the local predictability limit. This is closely related to
the sensitivity to the initial conditions of chaotic systems.

Nese (1989) constructed a Poincare section of the
Lorenz-63 attractor by intersecting a trajectory with the
plane x = —9. He found that the local divergence rates
for the lower piece of the map were always large and
positive, while most of the local divergence rates for the



374 X.-W. HUAI ET AL.

(@ 2

1.5

Time

(b)

In E

Time

Figure 1. Temporal evolution of the (a) nonlinear local Lyapunov exponent E(x(to), r) and (b) logarithm ofF(x(tO), r)for the initial state

x(—4.87,—7.35, 18.68) on the Lorenz attractor.

Note: The horizontal and vertical dashed lines in (b) are the saturation value of error growth and the local predictability limit, respectively.
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Figure 2. The phase-space structure of the local predictability
limit over the Lorenz attractor (5 x 10* initial states are chosen in
the phase space).

upper piece were negative. Thus, he concluded that the
predictability is organized, and it is low (high) on the lower
(upper) curve. However, Figure 3(a) shows that there are no
obvious differences between the distribution of the local
predictability limit on the lower and upper curves. Both
curves show a higher local predictability limit at both ends
but a lower limit in the central parts. The average values of
the local predictability limit on the upper and lower curves
are 11.4 and 11.7, respectively. Furthermore, the proba-
bility distributions are given in Figure 3(b). The difference
between the two probability distributions can be meas-
ured by the Kullback-Leibler (KL) divergence (Kullback and
Leibler 1951). For probability distributions P and Q of a
discrete random variable, the KL divergence D, (P||Q) of
Q from Pis calculated by

pi
D, (P||Q) = Z P(i)/og%. 2)

The KL divergence between the probability distri-
butions of the lower and upper curves is 0.0065, which
means that the distributions have little difference. This
result indicates that the results from the short-term local
divergence rate and the long-term local predictability limit
are different.

As already known, the fixed points of Equation (1) are O(0,
0,0)andP_(x,,y,,r — T)wherex =y = 1/b(r — 1)(Lorenz
1963; Mittal, Dwivedi, and Pandey 2005). For parameters
0=10,r =28, b=8/3, unstable fixed points on the warm
regime and the cold regime are P, = (8.4853,8.4853,27)
and P_ = (—8.4853,-8.4853, 27), respectively. Next, we
calculate the Euclidean distance between each point and
its corresponding fixed point. For a point P,(x,, ¥, Z,), the
distance R is calculated by

R= =%+ o=y + 5 -2, O

whereP(x,y,,z,) is the fixed point in its existing regime.
Then, we divide R into several intervals. Afterwards, the
probability distributions of the local predictability limit
in each interval of R are estimated (Figure 4(a)). Clearly,
in each interval, the probability of the local predictability
limit is nonuniformly distributed. This indicates that the
spatial structure of the local predictability limit is quite
complex. By taking out the local predictability limit with
maximum probability in each interval, a single curve can
be drawn, as shown in Figure 4(b). The parabolic shape of
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Figure 3. (a) Intersection of a trajectory on the Lorenz attractor with the Poincare section plane x = —9, where colors indicate the local
predictability limit. The lower curve denotes X < 0, while the upper one means x > 0. (b) Probability density function (PDF) of the
intersection points on the lower (blue) and upper (red) curves.
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Figure 4. (a) Probability density function (PDF) of the local predictability limit T, of the Lorenz attractor with respect to each interval of
the distance R. (b) The local predictability limit T, of the Lorenz attractor with the maximum PDF as a function of the distance R.
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Figure 5. Phase-space evolution of an ensemble of initial errors from (a) the point P,(9.24, 6.79, 30.76) and (b) the point P(-11.57,
—20.58, 16.74), at the dimensionless time of 10, 12, 14, and 16, respectively.

Note: The attractor is plotted in gray for reference.

the curve indicates that the points are likely to have long
predictability limits in the inner and outer rims of both
wings on the attractor. Meanwhile, the local predictability
limit for the central parts of each regime is prone to be low.

The evolutions of two different points in the phase
space are investigated to study the error growth dynamics.

One point, P (9.24, 6.79, 30.76), has a relatively long local
predictability limit of approximately 16, while the other
point, P(=11.57, —20.58, 16.74), is shorter. P_is chosen
from the inner rim of the warm regime, while P, is in the
central part from the cold regime. For each initial point,
500 different perturbations in random directions with



Time

Figure 6. (a) Local predictability limit as a function of the
residence time in the current regime. (b) Numerical solutions of
the Lorenz-63 system for variable x with starting points as P, (red

line) and P, (blue line), respectively.

Notes: Asterisks denote the regime change time for each point. The upper
(lower) dot-dashed line denotes the x-value of the fixed point in the warm
(cold) regime.

magnitude of 10~* are superimposed. Sections of evolu-
tionary trajectories at t = 10, 12, 14, and 16, are shown in
Figure 5. As the model evolves, the hypersphere of the
initial perturbations begins to deform and stretch into
an ellipsoid. At the same time, the directions of the initial
errors align to the leading Lyapunov vector, corresponding
to the unstable period of the NLLE (Trevisan and Pancotti
1998). Gradually, the information of the initial field is lost
(Li and Chou 1997). The ellipsoid is stretched and folded
repeatedly, due to the nonlinear effects, until it evolves
into an infinitely fractal structure (Kalnay 2002). For the
point with shorter predictability, the time at which the
nonlinear effects begin to dominate is earlier.

As previously noted (Evans et al. 2004; Zhang, Ide, and
Kalnay 2015), the duration in the current regime is criti-
cal in determining the predictability limit of each point.
As can be seen in Figure 6(a), there seems to be a linear
relationship between the time for a point shifting its exist-
ing regime and its local predictability limit. The change of
regime is affirmed when variables x and y change their
signs synchronously. However, as we can see, the relation-
ship is quite complex. The existing time itself cannot be
used as a sole predictor of the local predictability limit. The
predictability is also related with the position in the phase
space. For the two chosen points P, and P, the existing
time is 8 and 0.5, respectively (Figure 6(b)). The trajectory
oscillates around the unstable fixed pointP, and behaves
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in a quasi-periodic manner after leaving P . Meanwhile,
the spiral divergence fromP_ as the circuit becomes larger
before the trajectory finally shifts to the cold regime after
around 8 time units. However, the regime shifts to the
warm regime soon after the trajectory leaves P in the cen-
tral part of the cold regime. From this, we conclude that,
for the inner and outer rims of each regime, it is easier for
the trajectory to oscillate around the unstable fixed points,
thus leading to a longer existing time and, ultimately, a
longer predictability limit. However, for the central parts
in the phase space, the trajectories are prone to shifting
from their existing regimes to the other regime. So, the
local predictability limit for these points is lower.

4. Conclusion

The NLLE is used in the present study to quantitatively
estimate the local predictability limit of the Lorenz attrac-
tor. The result is quite different to that derived from linear
dynamics. Though the local predictability is not uniformly
organized, several statistical properties for the Lorenz
attractor exist. On the inner and outer rims of both wings
of the Lorenz attractor, the local predictability limit is
higher than average, while the center part of the attractor
shows a lower local predictability limit. However, initially
adjacent points in the phase space may possess quite dis-
tinct local predictability limits. This corresponds to the sen-
sitivity to the initial conditions of chaotic systems, which
may cause considerable difficulties in making long-term
analogue forecasts. The source of the local predictability
limit is linked to the local dynamics of the point. The region
where the point lies in the phase space and the residence
time in the current regime are considered. Further work is
needed to investigate the source of the local predictability.
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